
1

 Sisoft Technologies Pvt Ltd

SRC E7, Shipra Riviera Bazar, Gyan Khand-3, Indirapuram, Ghaziabad
Website: www.sisoft.in Email:info@sisoft.in

Phone: +91-9999-283-283

www.sisoft.in

http://www.sisoft.in/

 Sample Program of C ++

/*

 This is a sample of c ++ Program.

*/

include <iostream.h>

Using namespace std;

Int main()

{

Cout<<“Hello everybody”; // cout for print

Return 0;

}

Output: Hello Everybody
2 www.sisoft.in

Comments in C ++

3 www.sisoft.in

 Comment in C++ Programming is similar as that of in C. They are non
Executable Statements, and used for documentation. Comments can be
written anywhere and any number of times.

 Comments are always neglected by compiler. They replaced by white spaces
during the preprocessor phase.

 Types of comments:

 1. Single Comments :

 Single line comments starts with “//” Symbol.

 Ex: Cout<<“Hello World” // Print Hello World

 Cout<<“Good Morning” // Print Good Morning

 2. Multiple line Comments:

 Multiple line comments starts with /* and end with */

 Ex: /* this is

 A sample program of c ++

 */

4 www.sisoft.in

Cin keyword

5 www.sisoft.in

Cin : Extracting Input from User
Using Keyboard

• In C++, Cin is used for accepting data from keyboard.

• The operator >> called as extraction operator or get from operator.
This is used to accept value from the user.

• >> can be overloaded.

• Cin is the object of istream class

• Syntax: cin>>variable

6 www.sisoft.in

Cout keyword

7 www.sisoft.in

Cout : Display Output to User Using
Screen(Monitor)

• In C++ , Cout is used for displaying data on the screen.

• The operator << called as insertion operator or put to operator. It is
used to display value to the user. The value may be some message in
the form of string or variable.

• << can be overloaded.

• Cout is the object of ostream class

• Syntax: cout<<variable

8 www.sisoft.in

Tokens in C ++

9 www.sisoft.in

• The group of characters that forms an Basic Building block is called
as Token.

• There are 4 types of token in C++

10 www.sisoft.in

 Identifier

 Any used defined name given to the program element by the
programmer is called as identifier.

 In the C++ programming language, an identifier is a combination of
alphanumeric characters, the first being a letter of the alphabet or
an underline, and the remaining being any letter of the alphabet,
any numeric digit, or the underline.

 Identifier are used for any variable, function, data definition etc.

 Ex: name, namee_1, 1name etc.

11 www.sisoft.in

Rules in C++ for identifiers are:

1) Only Alphabets, Digits and Underscores are permitted.

2) Identifier name cannot start with a digit.

3) Key words cannot be used as a name.

4) Upper case and lower case letters are distinct.

5) Special Characters are not allowed.

6) Global Identifier cannot be used as Identifier.

12 www.sisoft.in

 Legal Characters:

• The set of characters in c ++ consists of alphabet, digits & special
Symbols.

Token Example Definition

Alphabets A-Z , a-z Set of letters

Digits 0-9 Numbers

Special characters $, %, _,^,:,; ASCII Printable characters

13 www.sisoft.in

 Keywords

 In C++, keywords are reserved identifiers which cannot be used as
names for the variables in a program.

 Ex: auto, else, if, cout, cin, signed, unsigned etc.

 Keywords cannot be used for :

 1. Declaring Variable Name

 2. Declaring Class Name

 3. Declaring Function Name

 4. Declaring Object Name

14 www.sisoft.in

 Constants:

• Constants are the items whose value cannot be changed during the
program execution.

15 www.sisoft.in

 Operators:

• An operator is a symbol which tells compiler to take an action on
operands and give the result.

• The Value on which operator operates is called as operands

16 www.sisoft.in

Data types in C++

17 www.sisoft.in

• Data types are used to define, the type of variables and contents used
in the program.

• Data types can be built in or abstract.

 1) Built in Data Types:

 These are those data types which are predefined and are wired
directly into the compiler.

• Ex: int, char etc.

 2) User defined or Abstract data types:

 These are those data type, that user creates as a class.

 In C++ these are classes ,where as in C it was implemented by
structures.

 Data Type Bytes

for integral number 2

For characters 1

single precision floating point numbers 4

double precision floating point numbers 8

18 www.sisoft.in

 2) User defined or Abstract data types:

 These are those data type, that user creates as a class.

 In C++ these are classes ,where as in C it was implemented by
structures.

19 www.sisoft.in

 Modifier

• A modifier is used to alter the meaning of the base type so that it
more precisely fits the needs of various situations.

• The data type modifiers are listed here:

 1) signed

 2) unsigned

 3) long

 4) short

20 www.sisoft.in

 Some Points about Modifiers:
1) long and short modify the maximum and minimum values that a

data type will hold. A plain int must have a minimum size of short.

2) Size hierarchy :

 short int < int < long int

3) Size hierarchy for floating point numbers is :

 float < double < long double

long float is not a legal type and there are no short floating point numbers.
Signed types includes both +ve & -ve. By default it is
+ve.

Unsigned numbers are always without any sign, that is always positive.

21 www.sisoft.in

Sizeof Operator in C ++

• sizeof is a compile-time operator, not a function.

• It is used to calculate the size (i.e. information about the amount of
memory allocated) of data type ,variable & objects. It return the size in
integer format.

• It can also be used to get size of user defined data types.

 Syntax : sizeOf(data type)

 sizeOf operator can be used with and without parentheses. If you apply it
to a variable you can use it without parentheses.

1) cout << sizeOf(double); // will print the size of double

2) int x = 2;

 int i = sizeOf x;

22 www.sisoft.in

int main()

 {

 cout << "Size of char : " << sizeof(char) << endl;

 cout << "Size of int : " << sizeof(int) << endl;

 cout << "Size of short int : " << sizeof(short int) << endl;

 cout << "Size of long int : " << sizeof(long int) << endl;

cout << "Size of float : " << sizeof(float) << endl;

 cout << "Size of double : " << sizeof(double) << endl;

return 0;

}

Output: Size of char : 1

 Size of int : 4

 Size of short int : 2

 Size of long int : 4

 Size of float : 4

 Size of double : 8 23 www.sisoft.in

typedef Operator
typedef is a keyword used in C language to assign alternative names to

existing types.

Basically it mostly used with user defined data types, when names of data
types get slightly complicated.

Syntax:

typedef typedef existing_name alias_name

24 www.sisoft.in

Example:

#include<stdio.h>

int main()

 {

 typedef int Number;

Number num1 = 40,num2 = 20;

Number answer;

 answer = num1 + num2;

cout<< answer;

 return;

 } Output: 60

25 www.sisoft.in

Decision Making statements in C++

26 www.sisoft.in

Decision making is about deciding the order of execution of statements
based on certain conditions or repeat a group of statements until
certain specified conditions are met.

C++ handles decision-making by following statements:-

1) if statement

2) switch statement

3) conditional operator statement

4) goto statement

27 www.sisoft.in

Decision making with if statement :-

The if statement may be implemented in different forms depending on
the complexity of conditions to be tested.

The different forms are:

1) Simple if statement

2) If....else statement

3) Nested if....else statement

4) else if statement

28 www.sisoft.in

Simple if statement:
 Syntax: if (condition)

 {

 // body

 }

Example: int main ()

 {

 int a = 10;

 if(a < 20)

 {

 cout << "a is less than 20;" << endl;

 }

 return 0;

 }

 29 www.sisoft.in

If………else statement
Syntax: if(boolean expression)

{

 // statement’s will execute if the boolean expression is true

}

 else

 {

// statement’s will execute if the boolean expression is false

 }

30 www.sisoft.in

int main ()

 {

 int a = 100;

 if(a < 20)

 {

 cout << "a is less than 20;" << endl;

 }

 else

 {

 cout << "a is not less than 20;" << endl;

 }

 cout << "value of a is : " << a << endl;

 return 0;

 }

31 www.sisoft.in

Nested if………else statement:
 Syntax: if(expression)

 {

 if(expression1)

 {

 statement-block 1 ;

 }

 else

 {

 statement-block 2;

 }}

 else

 {

 statement-block 3;

 }
32 www.sisoft.in

int main ()

{

 int a = 100 , b = 200;

 if(a == 100)

 {

 if(b == 200)

 {

 cout << "Value of a is 100 and b is 200" << endl;

 }

 }

 else

 cout << “No Match”<< endl;

 return 0;

 }

33 www.sisoft.in

Else……..if ladder:
Syntax: if(expression 1)

 {
 statement-block1;

 }
 else if(expression 2)

 {
 statement-block2;

 }

 else if(expression 3)

 {

 statement-block3;

 }

 else

 default-statement;
34 www.sisoft.in

void main()

{

 int number;

 cout<< "Enter an integer: ";

 cin>> number;

 if (number > 0)

 {

 cout << "You entered a positive integer: "<<number<<endl;

 }

 else if (number < 0)

 {

 cout<<"You entered a negative integer: "<<number<<endl;

 }

 else

 {

 cout<<"You entered 0."<<endl;

 } } 35 www.sisoft.in

C++ switch statement
 C++ provides the multi-way decision statement which helps to decrease

the complexity of the program. This is called Switch Case statement.

 OR

To select particular choice among number of choices, we use Switch
statement.

Switch case statement is best way to deal with the else-if nesting.

36 www.sisoft.in

Syntax:

 switch(expression)

 {

 case constant-expression :

 // statement

 break;

 optional case constant-expression :

 // statement

 break;

 .

 .

 // you can have any number of case statements.

 default :

 //Optional statement’s;

 }

 37 www.sisoft.in

38 www.sisoft.in

void main ()

{

 char grade = ‘C';

 switch(grade)

 {

 case 'A' :

 cout << "Excellent!" << endl;

 break;

 case 'B' :

 case 'C' :

 cout << "Well done" << endl;

 break;

 default :

 cout << "Invalid grade" << endl;

 }

 cout << "Your grade is " << grade << endl;

 } 39 www.sisoft.in

Loops in C ++

40 www.sisoft.in

There may be a situation, when user need to execute a block of code
several number of times. In that situation loop used.

A loop statement allows us to execute a statement or group of
statements multiple times

C++ programming language provides the following types of loop to
handle looping requirements.

1. for Loop

2. while Loop

3. Do-while Loop

41 www.sisoft.in

1. For loop

 for loop is a repetition control structure that allows user to efficiently
write a loop that needs to execute a specific number of times.

Syntax:

for (initialization; condition; increment)

{

 statement’s

 }

42 www.sisoft.in

Ex:

include <iostream>

 using namespace std;

 int main ()

{

 // for loop execution

for(int a = 10; a < 20; a = a + 1)

 {

 cout << "value of a: " << a << endl;

}

 return 0;

 }

43 www.sisoft.in

While loop

A while loop statement repeatedly executes a target statement as long as
a given condition is true.

Syntax:

while(condition)

{

 statement’s

}

44 www.sisoft.in

#include <iostream>

using namespace std;

int main ()

 {

 int a = 10;

 // while loop execution

 while(a < 20)

{

 cout << "value of a: " << a << endl;

 a++;

}

 return 0;

}

45 www.sisoft.in

do...while loop
 Unlike for and while loops, which test the loop condition at the top of the loop,

the do...while loop checks its condition at the bottom of the loop.

A do...while loop is similar to a while loop, except that a do...while loop is
guaranteed to execute at least one time.

Syntax:

do

{

 statement’s;

}

while(condition);

Notice that the conditional expression appears at the end of the loop, so the
statement(s) in the loop execute once before the condition is tested.

46 www.sisoft.in

#include <iostream>

using namespace std;

int main ()

{

 int a = 10;

do

 {

 cout << "value of a: " << a << endl;

 a = a + 1;

 } while(a < 20);

 return 0;

}

47 www.sisoft.in

C++ nested loops
 A loop can be nested inside of another loop. C++ allows at least 256 levels

of nesting.

Syntax:

for (initialization; condition; increment)

 {

 for (initialization; condition; increment)

{

 statement’s

}

statement’s

}

48 www.sisoft.in

int main()

 {

 int i , j, rows;

 cout<<"Enter the number of rows: ";

cin>>rows;

for(i=1;i<=rows;++i)

{

 for(j=1;j<=i;++j)

 {

 cout<<"* ";

 }

 cout<<"\n";

 }

 return 0;

 }
49 www.sisoft.in

Loop Control Statements

50 www.sisoft.in

There are three types of loop control statements:

 1. Break

 2. Continue

 3. goto

51 www.sisoft.in

Break statement
• In C++, break statement is used for the termination of the loop

statement and switch case statement.

• Syntax: break;

52 www.sisoft.in

int main ()

 {

 int a = 10;

 do

 {

 cout << "value of a: " << a << endl;

 a = a + 1;

 if(a > 15)

 {

 break;

 }

 }while(a < 20);

 return 0;

 }

53 www.sisoft.in

Continue statement
• In the break statement we can terminate the loop whenever require.

Similarly we can use continue statement to skip the part of the loop.

• Syntax: continue;

54 www.sisoft.in

int main ()

 {

 int a = 10;

 do

 {

 cout << "value of a: " << a << endl;

 a = a + 1;

 if(a > 15)

 {

 continue;

 }

 }while(a < 20);

 return 0;

 }

55 www.sisoft.in

goto statement
A goto statement used as unconditional jump from the goto to a labeled

statement in the same function.

 Advantage of goto statement:

 1. goto statement is used for unconditional jump.

 2. goto statement makes difficult to trace the control flow of program.

 3. goto statement should be avoided in order to make smoother
program.

Syntax: goto label;

.

.

label: statement;

 56 www.sisoft.in

int main ()

 {

 int a = 10;

 LOOP: do

 {

 if(a == 15)

 {

 a = a + 1;

 goto LOOP;

 }

 cout << "value of a: " << a << endl;

 a = a + 1;

 }while(a < 20);

 return 0;

 }

57 www.sisoft.in

Storage classes in C ++

58 www.sisoft.in

Storage classes are used to specify the lifetime and scope of variables.
How storage is allocated for variables and How variable is treated
by complier depends on these storage classes.

These are basically divided into 5 different types :

1. Global variables

2. Auto / Local variables

3. Register variables

4. Static variables

5. Extern variables

59 www.sisoft.in

Global Variables:

These are defined at the starting , before all function bodies and are
available throughout the program.

using namespace std;

int globe;// Global variable

void fun();

int main()

{

// statements;

}

60 www.sisoft.in

Auto/ Local variables:

 They are defined and are available within a particular scope. They
are also called Automatic variable, because they come into being
when scope is entered and automatically go away when the scope
ends. The keyword auto is used, but by default all local variables are
auto, so we don't have to explicitly add keyword auto before
variable declaration. Default value of auto variable is garbage.

61 www.sisoft.in

Register variables:

 This is also a type of local variable. This keyword is used to tell the
compiler to make access to this variable as fast as possible.
Variables are stored in registers to increase the access speed. But
you can never use or compute address of register variable and also ,
a register variable can be declared only within a block, that means,
you cannot have global or static register variables.

62 www.sisoft.in

Static Variables:

 Static variables are the variables which are initialized & allocated
storage only once at the beginning of program execution, no matter
how many times they are used and called in the program. A static
variable retains its value until the end of program. Static specifiers
are also used in classes.

Extern Variables:

 This keyword is used to access variable in a file which is declared &
defined in some other file, that is the existence of a global variable
in one file is declared using extern keyword in another file.

63 www.sisoft.in

Functions in C++

64 www.sisoft.in

A function is a group of statements that together perform a task. Every
C++ program has at least one function, which is main().

A function declaration tells the compiler about a function's name, return
type, and parameters.

 A function definition provides the actual body of the function.

Function are two types:

 1) Built-in functions

 2) User-Defined functions

65 www.sisoft.in

Defining a Function:

return_type function_name (parameter list)

 {

 body of the function

}

Return Type:

 A function may return a value. The return_type is the data type of the
value the function returns. When function data type void then it
doesn’t return any value.

66 www.sisoft.in

Function Name:

This is the actual name of the function. The function name and the
parameter list together constitute the function signature.

Parameters:

 A parameter is like a placeholder. When a function is invoked, you
pass a value to the parameter. This value is referred to as actual
parameter or argument. The parameter list refers to the type, order,
and number of the parameters of a function. Parameters are optional
It means, a function may contain no parameters.

Function Body:

 The function body contains a collection of statements that define what
the function does.

67 www.sisoft.in

Function Declarations:
A function declaration tells the compiler about a function name and how

to call the function.

The actual body of the function can be defined separately.

A function declaration has the following parts:

return_type function_name(parameter list);

 When function has parameters then Parameter names are not
important in function declaration only their type is required.

 Function declaration is required when you define a function in one
source file and you call that function in another file. In such case, you
should declare the function at the top of the file calling the function.

68 www.sisoft.in

Calling a Function:

• To use a function, you will have to call or invoke that function.

• When a program calls a function, program control is transferred to the
called function. A called function performs defined task and when its
return statement is executed or when its function-ending closing brace
is reached, it returns program control back to the main program.

• To call a function, you simply need to pass the required parameters
along with function name, and if function returns a value, then you
can store returned value.

69 www.sisoft.in

int max(int num1, int num2); // function declaration

int main ()

{

int a = 100; int b = 200; int ret;

ret = max(a, b); // calling a function

cout << "Max value is : " << ret << endl;

 return 0;

}

int max(int num1, int num2) // function definition

{

int result;

 if (num1 > num2)

result = num1;

else result = num2;

 return result;

 }
70 www.sisoft.in

Function Arguments:
 • If a function is to use arguments, it must declare variables that

accept the values of the arguments. These variables are called
the formal parameters of the function.

• The formal parameters behave like other local variables inside the
function and are created upon entry into the function and destroyed
upon exit.

• While calling a function, there are two ways that arguments can be
passed to a function:

1) Call By Value

2) Call By Reference

71 www.sisoft.in

Call By Value:

• The call by value method , of passing arguments to a function copies
the actual value of an argument into the formal parameter of the
function. In this case, changes made to the parameter inside the
function have no effect on the argument.

• By default, C++ uses call by value to pass arguments.

72 www.sisoft.in

Ex.
void swap(int x, int y);

int main ()

{

 int a = 100, b = 200;

 cout << "Before swap, value of a :" << a << endl;

 cout << "Before swap, value of b :" << b << endl;

 // calling a function to swap the values.

swap(a, b);

cout << "After swap, value of a :" << a << endl;

cout << "After swap, value of b :" << b << endl;

return 0;

}

void swap(int x, int y)

{

 int temp;

temp = x;

 x = y;

 y = temp;

 return;

}
73 www.sisoft.in

Call By Reference:
• The call by reference method of passing arguments to a function

copies the reference of an argument into the formal parameter.
Inside the function, the reference is used to access the actual
argument used in the call. This means that changes made to the
parameter affect the passed argument.

74 www.sisoft.in

Ex.
void swap(int &x, int &y);

 int main ()

{

 int a = 100; b = 200;

cout << "Before swap, value of a :" << a << endl;

cout << "Before swap, value of b :" << b << endl;

 swap(a, b);

cout << "After swap, value of a :" << a << endl;

cout << "After swap, value of b :" << b << endl;

return 0;

}

void swap(int &x, int &y)

{

 int temp;

temp = x;

x = y;

 y = temp;

 return;

}
75 www.sisoft.in

Default Values for Parameters:
 • When you define a function, you can specify a default value for

each of the last parameters. This value will be used if the
corresponding argument is left blank when calling to the function.

• This is done by using the assignment operator and assigning values
for the arguments in the function definition.

• If a value for that parameter is not passed when the function is
called, the default given value is used, but if a value is specified,
this default value is ignored and the passed value is used instead.

76 www.sisoft.in

Ex.
#include <iostream>

using namespace std;

int sum(int a, int b=20)

 {

 int result;

 result = a + b;

 return (result);

 }

 int main ()

{

 int a = 100, b = 200, result;

 result = sum(a, b);

 cout << "Total value is :" << result << endl;

 return 0;

}

77 www.sisoft.in

Array in C ++

78 www.sisoft.in

 Why use Array:
• Suppose we have to store the roll numbers of the 100 students the we

have to declare 100 variables named as roll1, roll2, roll3, …….. roll100.
which is very difficult job.

• So C++ Programming gives array which have the capability to store
the 100 roll numbers in the contiguous memory in 100 blocks and
which can be accessed by single variable name.

1) An Arrays is the Collection of similar types of elements.

2) All elements are stored in Contiguous memory locations & are
accessed using the subscript variable.

79 www.sisoft.in

Pictorial Look of an Array:

Here array is declared as int a[5];

a[0] =4; a[1]=5; a[2] =33; a[3]=13; a[4] =1;

4,5,33,13,1 are actual data items & 0,1,2,3,4 are index variables.

Index or Subscript variable:

 Individual data items can be accessed by the name of the array and an
integer enclosed in square bracket called subscript variable / index.

 Subscript Variables helps us to identify the item number to be accessed
in the contiguous memory.

80 www.sisoft.in

Types of Arrays:

81 www.sisoft.in

1. Single Dimensional Array :

 1) Single or One Dimensional array is used to represent and
store data in a linear form.

 2) Array having only one subscript variable is called One-
Dimensional Array.

 3) It is also called as Linear Array.

 Syntax: <data_type> <array_name> [size];

 Example: 1. int a[3] = {2,3,4};

 2. char c[20] =“HELLO”;

82 www.sisoft.in

2. Multi Dimensional Array :

 1) Array having more than one subscript variable is called
Multi - Dimensional Array.

 3) It is also called as Matrix.

 Syntax: <data_type> <array_name> [row_subscript]
 [column_subscript];

 Example: 1. int a[3][3] = {1,2,3,4,5,6,7,8,9};

 OR

 int a[3][3] = {

 {1,2,3},

 {4,5,6},

 {7,8,9}

 }; 83 www.sisoft.in

Example:

 int main()

 {

 int arr [6]= {1,2,3,4,5,6};

 int i;

 for(i=0;i<6;i++)

 {

 cout<<arr [i]<<endl;

 cout<<&arr [i]<<endl;

 }}

 return 0;

 }

84 www.sisoft.in

Example :

 int main()

 {

 int arr [2][3]= {1,2,3,4,5,6};

 int i, j;

 for(i=0;i<2;i++)

 {

 for(j=0;j<3;j++)

 {

 cout<<arr [i][j]<<endl;

 cout<<&arr [i][j]<<endl;

 }}

 return 0;

 }

85 www.sisoft.in

Pointers in C++

86 www.sisoft.in

 A pointer is a variable whose value is the address of another variable.

 Since Pointer is also a kind of variable, thus pointer itself will be stored
at different memory location.

 Like any variable or constant, you must declare a pointer before you
can work with it.

 Syntax: data_type *var-name;

 Ex: int *ip; // pointer to an integer .

 double *dp; // pointer to a double .

 float *fp; // pointer to a float.

 char *ch // pointer to character

87 www.sisoft.in

 Declaration of Pointer

Syntax: data_type *var-name;

 Ex: int *ip;

Explanation: Asterisk(*)

 * is called as Indirection Operator.

It is also called as Value at address Operator

It indicates Variable declared is of Pointer type.

88 www.sisoft.in

 Ways of Declaration of Pointer

 * can appears anywhere between Pointer_name and Data Type.

 int *p; OR int * p; OR int * p;

89 www.sisoft.in

 Initialization of Pointer

Syntax: ptr_name = & Var_name;

Here & is called Address Operator.

90 www.sisoft.in

Ex:

void main()

{

int i, *ptr;

i=10;

ptr = &a;

cout<<ptr;

}

91 www.sisoft.in

C++ pointers vs. arrays
 Pointers and arrays are strongly related. In fact, pointers and arrays are

interchangeable in many cases. For example, a pointer that points to
the beginning of an array can access that array by using either pointer
arithmetic or array-style indexing.

92 www.sisoft.in

Example:

 const int MAX = 3;

 int main ()

 {

 int var[MAX] = {10, 100, 200};

 int *ptr;

 ptr = var;

 for (int i = 0; i < MAX; i++)

 {

 cout << "Address of var[" << i << "] = "; cout << ptr << endl;
 cout << "Value of var[" << i << "] = "; cout << *ptr << endl;

 ptr++;

 }

 return 0;

 }

 93 www.sisoft.in

C++ Pointer to Pointer (Multiple
Indirection)

• A pointer to a pointer is a form of multiple indirection or a chain of
pointers.

• Normally, a pointer contains the address of a variable. When we
define a pointer to a pointer, the first pointer contains the address of
the second pointer, which points to the location that contains the
actual value as shown below.

Ex: int a;

 int *ptr, **ptr 1;

 a = &ptr;

 ptr 1 = &ptr;

•
 94 www.sisoft.in

Example:

int main ()

{

int var, *ptr, **pptr;

var = 3000;

ptr = &var;

pptr = &ptr;

cout << "Value of var :" << var << endl;

cout << "Value available at *ptr :" << *ptr << endl;

cout << "Value available at **pptr :" << **pptr <<
endl;

return 0;

}

95 www.sisoft.in

String in C++

96 www.sisoft.in

A string is actually a one-dimensional array of characters which is
terminated by a null character '\0'. Thus a null-terminated string
contains the characters that comprise the string followed by a null.

The following declaration and initialization create a string consisting of
the word "Hello".

char greeting[6] = {'H', 'e', 'l', 'l', 'o', '\0'};

 OR

char greeting[] = "Hello“;

97 www.sisoft.in

Example:

int main ()

 {

 char greeting[6] = {'H', 'e', 'l', 'l', 'o', '\0'};

 cout << greeting << endl;

 return 0;

 }

98 www.sisoft.in

String Functions:
S.N. Function & Purpose

1
strcpy(s1, s2);
Copies string s2 into string s1.

2
strcat(s1, s2);
Concatenates string s2 onto the end of string s1.

3
strlen(s1);
Returns the length of string s1.

4
strcmp(s1, s2);
Returns 0 if s1 and s2 are the same; less than 0 if s1<s2; greater than 0 if s1>s2.

5
strchr(s1, ch);
Returns a pointer to the first occurrence of character ch in string s1.

6
strstr(s1, s2);
Returns a pointer to the first occurrence of string s2 in string s1.

99 www.sisoft.in

Example:

#include <iostream>

#include <cstring>

using namespace std;

 int main ()

{

 char str1[10] = "Hello";

char str2[10] = "World";

char str3[10];

int len ;

strcpy(str3, str1); // copy str1 into str3

cout << "strcpy(str3, str1) : " << str3 << endl;

strcat(str1, str2); // concatenates str1 and str2

cout << "strcat(str1, str2): " << str1 << endl;

len = strlen(str1); // total lenghth of str1 after concatenation

cout << "strlen(str1) : " << len << endl;

return 0;

}

100 www.sisoft.in

